Exercise 34

Find the critical numbers of the function.

$$
g(t)=|3 t-4|
$$

Solution

A critical number is a value of t for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
g^{\prime}(t) & =\frac{d}{d t}|3 t-4| \\
& =\frac{d}{d t} \sqrt{(3 t-4)^{2}} \\
& =\frac{1}{2}\left[(3 t-4)^{2}\right]^{-1 / 2} \cdot \frac{d}{d t}(3 t-4)^{2} \\
& =\frac{1}{2}\left[(3 t-4)^{2}\right]^{-1 / 2} \cdot 2(3 t-4)^{1} \cdot \frac{d}{d t}(3 t-4) \\
& =\frac{1}{2}\left[(3 t-4)^{2}\right]^{-1 / 2} \cdot 2(3 t-4) \cdot(3) \\
& =\frac{6(3 t-4)}{2 \sqrt{(3 t-4)^{2}}} \\
& =\frac{3(3 t-4)}{|3 t-4|} \\
& =3 \operatorname{sgn}(3 t-4)
\end{aligned}
$$

Set what's in the denominator equal to zero and solve for t.

$$
\begin{gathered}
|3 t-4|=0 \\
3 t-4=0 \\
t=\frac{4}{3}
\end{gathered}
$$

